Grundlagenforschung: Vom Ursprung des Lebens aus der Proteinperspektive

Roland Riek ETH Zurich

Biological NMR Group

- AI (Dr. Piotr Klukoswki, Dr. Peter Güntert, Henry Whetton, Luca Wenchel)
- NMR (Dr. Felix Torres, Matthias Bütikofer, Gabriela Stadler, Olivia Gampp)
- **Parkinson's disease** (Dr. Lukas Frey, Dr. Dhiman Ghosh, Dr Juan Gerez, David Rhyner)
- Origin of Life (Dr. Saroj Rout, Dr. Jason Greenwald, Dr. Witek Kwiatkowski)

it-heavy SG (C)

-Pit-heavy SG (C)

Rat-Pit-heavy SG (C)

NMR: Kernspin-Resonanz-Spektroskopie

NMR: Kernspin-Resonanz-Spektroskopie

- 1938 NMR in molecular beams; Rabi (Nobelpreis in Physik 1943)
- 1946 NNR in bulk matter; Bloch & Purcell (Nobelpreis in Physik 1952)
- 1970 FT-NMR and multidimensional NMR; Ernst & Jener (Nobelpreis f
 ür R. Ernst in Chemie 1991)
- 1973 MRI; Lauterbur and Mansfield (Nobelpreis in Medizin 2003)
- 1984/85 NMR structure of a protein (Arseniev, Kaptein, Wagner, Braun, Wüthrich (Nobelpreis für K. Wüthrich in Chemie 2002)

NMR: Kernspin-Resonanz-Spektroskopie

1D 1H NMR of RNA

Kommunikation zwischen Spins

Kommunikation zwischen Spins

Protein Strukturen

2HEQ (0.60Å; 94.48/84.63%)

Ribosome

Translation machinery

Translation machinery

Huhn – Ei Paradox

- Proteine werden durch RNA und Protein hergestellt aus DNA/RNA Information
- RNA wird durch Proteine hergestellt aus DNA/RNA Information

Leben aus der chemischen Perspektive

- Komplexität aus "einfachen" Bausteinen
- Proteine mit Aminosäuren als Bausteine
- Membrane mit Lipide/Fettsäuren als Bausteine
- RNA/DNA mit Nucleotide als Bausteine
- Ein totes Bakterium ist tot

A first important question is what (if any) type of sequence selection is made in the synthesis process.

Number of unique sequences: $N=A^n$ (A = # of amino acid types, n = length of peptide)

- 4 amino acids, peptide length 6 N ~ 4k
- 4 amino acids, peptide length 10 N ~ 1M
- 20 amino acids, peptide length 100

 $N = 20^{100}$

Mass calculation for a single copy of each possible 100-mer:

20¹⁰⁰ x 10000 g mol⁻¹ / 6.022 x 10²³ mol⁻¹ = 3 x 10⁸¹ g

Mass of observable universe = 3×10^{55} g

Only enough mass to make a single copy of 1 in 10²⁶ sequences !!!!

Putting this into perspective for life on Earth:

If the entire Mass of the earth contributed to making a single copy of every 100mer, only 1 in 5e53 of them could be made once.

Relative to an object the size of the Earth, the size of the space that has been searched is a 1/50th of a hydrogen atom.

Chemische Information

- Genetischer Code
- Proteine/DNA/RNA/Lipide
- Genome Information

Einfache Moleküle im All (Ursuppe Experimente)

• Fullerene

	М1	М2	М3	I1	A1
G - Gly	1.00	1.0	1.000	1.000	1.000
A - Ala	0.34	0.4	0.380	0.293	0.540
D - Asp	0.19	0.5	0.035	0.022	0.006
E - Glu	0.40	0.5	0.110	0.000	0.010
V - Val	0.19	0.3	0.100	0.012	0.000
S - Ser	0.00	0.0	0.003	0.072	0.000
I - Ile	0.13	0.0	0.060	0.000	0.000
L - Leu	0.04	0.0	0.035	0.000	0.000
P - Pro	0.29	0.1	0.000	0.001	0.000
T - Thr	0.00	0.0	0.003	0.000	0.000
K - Lys	0.00	0.0	0.000	0.000	0.000
F - Phe	0.00	0.0	0.000	0.000	0.000
R - Arg	0.00	0.0	0.000	0.000	0.000
H - His	0.00	0.0	0.000	0.000	0.000
NQCYMW	0.00	0.0	0.000	0.000	0.000

The rise of molecular complexity and the emergence on function (life)

The "worlds"

- RNA World hypothesis
- Membrane world hypothesis
- Protein/Peptid world hypothesis

The RNA World Hypothesis

- Selbstvervielfachende RNA
- Ribzoyme
- Ribosome hat RNA als katalytisches Zentrum
- Genetische Information

Amyloid Fibrillen

Alzheimer Erkankung

BRAIN ATROPHY VISUAL STANDARDS

GRADE = 1 (NONE, NL FOR AGE)

GRADE = 2 (MODERATE)

GRADE = 3 (SEVERE)

. frontal horns body/temporal horns · trigone

From Alzheimer's Disease Education and Referral (ADEAR) Center's Web site and library.med.utah.edu

3D Struktur von Aβ(1-42) Amyloid Fibrillen

Amyloid Fibrils

ふっ

Amyloid Fibrils
Protein-only Hypothese und Amyloidogenesis

ふっ

Amyloid Fibrils

Protein-only Hypothese und Amyloidogenesis

3D Struktur von β-endorphin Amyloid Fibrillen

Cell membrane

Golgi

Granule

Golgi

Cell membrane

Ursprung des Lebens: The amyloid world hypothesis (Ghazit, Maury, Orgel)

Hypothese: Peptide amyloids spielen am Anfang des Lebens eine wichtige Rolle

Rational:

Simple short peptide sequences can form a tertiary structure

Amyloids are stable in harsh conditions Amyloids are not highly sequence specific Amyloids can replicate themselves (prions) Amino acid sequences evolve away from amyloid sequences

Peptide and proteins

Peptide Amyloids

Class 1 GNNQQNY, yeast prion Sup35 (1YJP)

Class 5 LSFSKD, β₂ microglobulin (3LOZ)

Eisenberg & Riek, Nature 2016

AllGLM, amyloid-β peptide (2Y3J)

Class 6 MMHFGN, Syrian hamster prion (3NVE)

HSSNNF, IAPP (3FPO)

Class 7 MVGGVVIA, amyloid-β peptide (2Y3K)

Asn Tyr ladder ladder

Class 8 GYMLGS, human prion (3NHC)

Eigenschaften von Amyloiden

- Kurze Peptide machen eine 3D Struktur
- Amyloide sind stabil

 Interaktionen werden gestärkt durun Kooperativität

A first important question is what (if any) type of sequence selection is made in the synthesis process.

Number of unique sequences: $N=A^n$ (A = # of amino acid types, n = length of peptide)

- 4 amino acids, peptide length 6 N ~ 4k
- 4 amino acids, peptide length 10 N ~ 1M
- 20 amino acids, peptide length 100

 $N = 20^{100}$

Mass calculation for a single copy of each possible 100-mer:

20¹⁰⁰ x 10000 g mol⁻¹ / 6.022 x 10²³ mol⁻¹ = 3 x 10⁸¹ g

Mass of observable universe = 3×10^{55} g

Only enough mass to make a single copy of 1 in 10²⁶ sequences !!!!

Putting this into perspective for life on Earth:

If the entire Mass of the earth contributed to making a single copy of every 100mer, only 1 in 5e53 of them could be made once.

Relative to an object the size of the Earth, the size of the space that has been searched is a 1/50th of a hydrogen atom.

Overall sequence Coverage

 Sequence coverage of 6, 7, 8, 9-mers: 99.8, 79.8, 20.9, 1.7%

(9aa 512 billions arrangements)

Peptide Amyloids

Class 1 GNNQQNY, yeast prion Sup35 (1YJP)

Class 5 LSFSKD, β₂ microglobulin (3LOZ)

Eisenberg & Riek, Nature 2016

AllGLM, amyloid-β peptide (2Y3J)

Class 6 MMHFGN, Syrian hamster prion (3NVE)

HSSNNF, IAPP (3FPO)

Class 7 MVGGVVIA, amyloid-β peptide (2Y3K)

Asn Tyr ladder ladder

Class 8 GYMLGS, human prion (3NHC)

Screening the Protein Sequence Universe for amyloid presence (top down)

Take all proteomes known and study the amyloidogenecity of peptides

- Mehr amyloid Sequenzen als statistisch arbiträr
- Bakterien/Archaea haben mehr amyloidogene Sequenzen als Eukar

How to support the Amyloid World hypothesis (bottom up)? ?

Our Scratch: Amino Acids

Presence of Amino acids in Meteorites -> Selecting: Gly, Ala, Asp, Val

Composition

	М1	M2	М3	I1	A1
G - Gly	1.00	1.0	1.000	1.000	1.000
A - Ala	0.34	0.4	0.380	0.293	0.540
D - Asp	0.19	0.5	0.035	0.022	0.006
E - Glu	0.40	0.5	0.110	0.000	0.010
V - Val	0.19	0.3	0.100	0.012	0.000
S - Ser	0.00	0.0	0.003	0.072	0.000
I - Ile	0.13	0.0	0.060	0.000	0.000
L - Leu	0.04	0.0	0.035	0.000	0.000
P - Pro	0.29	0.1	0.000	0.001	0.000
T - Thr	0.00	0.0	0.003	0.000	0.000
K - Lys	0.00	0.0	0.000	0.000	0.000
F - Phe	0.00	0.0	0.000	0.000	0.000
R - Arg	0.00	0.0	0.000	0.000	0.000
H - His	0.00	0.0	0.000	0.000	0.000
NQCYMW	0.00	0.0	0.000	0.000	0.000

Higgs and Pudritz, 2009

Second requirement is the peptide synthesis

Carbonyl Sulfide–Mediated Prebiotic Formation of Peptides

Luke Leman,¹ Leslie Orgel,² M. Reza Ghadiri^{1*}

Science 306 283-286

Poly Ala and Val from precipitate of COS mediated condensation (from 10 mM Ala/Val) (Greenwald, Riek et al., Angewandte Chemie 2015)

4-component co-polymerization 10 mM L-alanine, 5 mM L-valine, 2 mM Lglycine, 1 mM L-aspartate CDI (Carbonyldimidazole) activated amino acids in H₂O

~5 nm wide fibrils

How to support the Amyloid World hypothesis?

(CDI carbonyl diimidazole amino acids)

(CDI carbonyl diimidazole amino acids)

Peptide Replication within an Amyloid

How to support the Amyloid World hypothesis (bottom up)?

HPLC of with and without template of the reaction of CDIactivated amino acids L-Arg (R) and D-Arg(r) and L-Phe (F) and D-Phe (f)

100 microM substrate and template 200 microM amino acids

How to support the Amyloid World hypothesis?

Can Amyloids **11** zyn Peptide of lengtl..., Jus Y Amino acid composition: V AC-YV**H**V**H**V**S**V-CONH2

Table S1 and associated data: Biophysical characterization of library peptides.

		pH 7.3				pH 4.0			
	Sequence	ThT^1	CD^2	$FTIR^3$	$\mathrm{E}\mathrm{M}^4$	ThT	CD	FTIR	$\mathbf{E}\mathbf{M}$
1	Ac-YVDVDVDV-CONH2	1	-	-		89	β^{++}	1625	+
2	Ac-YVSVDVDV-CONH2	24	-	1624		322	β^{++}	1624	+
3	Ac-YVDVSVDV-CONH2	2	-	-		120	β^{++}	1623	+
4	Ac-YVDVDVSV-CONH2	3	-	-		160	β^{++}	1618	+
5	Ac-YVSVSVDV-CONH2	322	β^+	1619		322	β^{++}	1618	+
6	Ac-YVSVDVSV-CONH2	309	β^+	1618		322	β^{++}	1622	+
7	Ac-YVDVSVVCONH2	208	-	-		128	β^{++}	1619	+
8	Ac-YVHVHVHV-CONH2	126	β^+	1627	+	1	-	-	-
9	Ac-YVSVHVHV-CONH2	82	β^{++}	1624	+	1	-	-	_
10	Ac-YVHVSVHV-CONH2	29	β^+	1623	+	1	_	_	
11	Ac-YVHVHVSV-CONH2	18	β^{++}	1624	+	1	_	-	
12	Ac-YVSVSVHV-CONH2	183	β^{++}	1623		5	?	1621	+
13	Ac-YVSVHVSV-CONH2	0	β^+	1622	+	11	β^{++}	1621	
14	Ac-YVHVSVSV-CONH2	322	β^+	1624	+	2	β^+	1623	
15	Ac-YVDVHVSV-CONH2	114	β^+	1623	+	13	β^+	1622	+
16	Ac-YVDVSVHV-CONH2	177	β^{++}	1618	+	7	β^{++}	1619	+
17	Ac-YVHVDVSV-CONH2	163	β^+	1622	+	5	β^{++}	1622	
18	Ac-YVSVDVHV-CONH2	31	β^{++}	1622	+	1	β^{++}	1622	
19	Ac-YVSVHVDV-CONH2	142	β^{++}	1624	+	9	β^{++}	1624	
20	Ac-YVHVSVDV-CONH2	98	β^+	-	+	23	β^{++}	1622	+
21	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	133	β^+	1626	+	1	?	_	+
22	Ac-YVHVDVHV-CONH2	44	β^+	1624	+	1	?	-	+
23	Ac-YVDVHVHV-CONH2	21	β^+	1624	+	1	-	1626	+
24	Ac-YVDVDVHV-CONH2	2	-	-	+	1	β^{++}	1626	+
25	$Ac-YVDVHVDV-CONH_2$	2	-	-		9	β^{++}	1623	+
26	Ac-YVHVDVDV-CONH2	5	-	_		5	β^{++}	1624	+
27	Ac-YVAVHVHV-CONH2	129	β^+	1625	+	1	-	-	
28	Ac-YVHVAVHV-CONH2	114	β^+	1624	+	1	_	-	
29	Ac-YVDVHVAV-CONH2	183	β^+	1622	+	25	?	1618	
30	Ac-YVAVDVHV-CONH2	42	-	1623	+	10	β^{++}	1624	
31	Ac-YVHVDVAV-CONH2	259	β^+	1622		32	β^{++}	1621	+
32	Ac-YVHVAVDV-CONH2	322	β^+	1621		111	β^{++}	1621	+
33	Ac-YVAVHVDV-CONH2	67	β^+	1624		2	β^{++}	1623	+

(Friedmann, Riek et al. PLoS ONE, 2015)

AC-YVAVHVH CONH2

Short peptides self-assemble to produce catalytic amyloids ONH 2

Caroline M. Rufo^{1†}, Yurii S. Moroz^{1†}, Olesia V. Moroz^{1†}, Jan Stöhr², Tyler A. Smith¹, Xiaozhen H William F. DeGrado^{3*} and Ivan V. Korendovych^{1*}

Many catalytic Activities of Peptide Amyloids (Marshall and Korendovych, 2021)

How to support the Amyloid World hypothesis?

How to support the Amyloid World hypothesis?

Ancient Canonical Motif

How to support the Amyloid World hypothesis?

Amyloid Fibrillen in einem Membran Container

ETH zürich

40 groups at ETH over 5 departments Head of COPL: Didier Queloz Vice-directorate: Sascha Quanz, Cara Carmagnabosco, Roland Riek

NOMIS

"Progress in science depends on new techniques, new discoveries and new ideas, probably in that order"

Sydney Brenner

<u>Beta-endorphin</u> Carolin Seuring Nadja Nespovitaya

Beat Meier Samir Maji <u>Orgin of life</u> Saroj Rout Witek Kwiatkowski Radek Bomba

Jason Greenwald

<u>Cryo EM of a-</u> <u>synuclein</u> Henning Stahlberg (Biozentrum) Ricardo Rodriguez (Biozentrum) Pratibha Kumari

Secondary Nucleation of a-synuclein Cedric Eichmann Pratibha Kumari Dhiman Ghosh Yannick Fleischmann

A-Synuclein chaperone Björn Burmann (Biozentrum Basel) Sebastian Hiller (Biozentrum Basel) Juan Gerez Pratibha Kumari