

Dekarbonisierung und Energieversorgungssicherheit: welchen Beitrag können syntetische chemische Energieträger dazu leisten?

Konstantinos Boulouchos ETH Zürich

St.Gallische Naturswissenschaftliche Gesellshaft NWG

2. März, 2022

To discuss today

- Sustainability challenges the Energy "Trilemma"
- Energy and society the "S-curve"
- Two complementary paths for the elimination of fossil energy supply
- Renewable (synthetic) fuels:
 - How much?
 - Where from?
 - At which costs?
- Policy, innovation and global cooperation: synergetic roles

Energy and climate policy: the "Trilemma"

Alignment with international regulations / currently: CH-energy expenditures ~4% of GDP

Energy system of planet Earth

Source: Borst, Fricke, 1979 adapted by G. Pareschi LAV/ETHZ

The energy system:

Link between natural resources and human development

An integrated view of an energy system

Drivers behind CO₂ growth... and CO₂ reduction

The case of Switzerland

Every tonne of CO₂ adds to global warming

Distribution of today's GHG emissions by sector and country

*FOLU = Forestry and Other Land Use

Sources: 1) IEA 2019; IPCC AR5; IPCC SR1.5; aggregated by G. Pareschi.

2) Gütschow, J.; Günther, A.; Pflüger, M. (2021): The PRIMAP-hist national historical emissions time series (1750-2019). v2.3.1. zenodo. https://doi.org/10.5281/zenodo.5494497

Historical cumulative emissions per capita

The responsibility of industrialized countries

Relevance of Transportation for the Swiss CO₂ Emissions

Total 2019: 43 MtCO₂/y

Transport demand projections

?

tkm

pkm

2040

How can we reduce CO₂-emissions?

 \rightarrow (the four **R**'s – strategy)

If we have 20-50 years, why is immediate action imperative?

Two complementary decarbonizations strategies

- A. Directly electrify what is possible:
 - Cars
 - Light-duty road
 - Low-temperature heating (heat pumps)
- B. Use "Net-zero" CO₂ chemical energy carriers elsewhere:
 - Heavy-duty road
 - Aviation
 - Seasonal electricity storage (?)
 - High-temperature industrial process heat (?)
 - (Shipping)

However, the situation in Winter requires imports in the order of **9 TWh** (compared to today's 5 TWh)

Several energy sectors cannot be directly electrified

Example of long-haul aviation

- Estimates indicate that with a battery-pack energy density of 800 Wh/kg (expected around 2050), 1'000 km of flight could be covered by all-electric aircrafts.
- However, outbound flights shorter than 1'000 km correspond to only 19% of total Swiss CO₂ emissions from aviation.
- Even then, assuming 7 flights a day and a useful battery lifetime of 1'000 deep discharge cycles, batteries should be replaced after 5 months of operation.

→ Similar challenges for shipping, heavy-duty trucks and some industrial processes

Source:

- Own calculation based on the methodology of: Seymour K., Held M., Georges G., Boulouchos K. (2020): "Fuel Estimation in Air Transportation: Modeling global fuel consumption for commercial aviation" in Transportation Research Part D: Transport and Environment, DOI: 10.1016/j.trd.2020.102528
- Schäfer A., et al. (2019): "Technological, economic and environmental prospects of all-electric aircraft" in Nature Energy, vol.4 (2), pp. 160-166

Long-term consequences of seasonal fluctuations of renewable electricity

Example of Germany: first half of 2020 vs first half of 2021

<u>Therefore</u>: chemical energy carriers for power-on-demand will remain indispensable!! But we must replace fossil ones with renewable fuels! This implies large chemical energy storage capacities.

But which "Net-zero" CO₂ (hydrocarbon) fuels exactly?

It's going to depend on the relative learning rates of Direct Air Capture (DAC) and Storage against the E-Fuel production chain (which includes DAC itself)

Evolution of Swiss Energy Imports

according to EnergiePerspektiven2020 (EP2050+) ZERO Basis*

Securing energy supply for Switzerland in 2050

Scenarios	EP2050+ ZERO Basis		Winter electr. through e-fuels imports		Winter electr. through domestic shift	
Description	ZERO Basis scenario of the Energieperspektiven: directly importing electricity in winter and e-fuels only for transport.		Winter electricity deficit is met by importing additional e-fuels and generating electricity domestically via CCGTs or CHPs.		Winter electricity deficit is met by expanding Swiss PV generation and shifting all excess summer production to winter via e-fuels (electrolyzers + CCGTs / CHPs).	
Winter electricity imports	9 TWh el.		0		0	
Domestic power generation	70 TWh el.		70 TWh el.		80 TWh el.	
E-fuels imports	30 TWh e-fuels		46 TWh e-fuels		30 TWh e-fuels	
Foreign electricity demand for e-fuels production ⁺	60 TWh el.		92 TWh el.	-	60 TWh el.	

⁺Today's electricity-to-fuel factor lies between 1.6 (compressed hydrogen) and 2.7 (liquid hydrocarbons). Source: B. Stolz, M. Held (2021) published in *Nature Energy*. With future improvements of the electricity-to-fuel conversion, the average factor would be *around* 2.

Assessment of Swiss security of energy supply

Energy Imports [TWh / y]

■ fossil fuels (w. int. aviation)

biomass

- summer el. exports
- ◆ total net imports

e-fuels (w. int. aviation) winter el. imports

Import Dependency % (Net imports / BEV)

What would it take to produce 92 TWh of electricity? (just for e-fuels!)

	Full-load hours	Peak capacity	Surface area km x km	Surface area % of Switzerland	LCOF CHF / liter	Total annualized costs* bill. CHF
PV in Switzerland	1'000	92 GW	39 x 39	4%	2.8	11.4
PV in Middle East	2'500	37 GW	18 x 18	1%	1.1	4.5
Off-shore Wind EU	4'000	23 GW	66 x 66	10%	2.0	8.3
On-shore Wind Patagonia	5'300	17 GW	46 x 46	5%	1.0	4.2
Nuclear	7'000	13 GW	Virtually 0	Virtually 0	2.0	8.2

*Without transport cost...

Preliminary results by G. Pareschi (LAV ETHZ) based on multiple sources and according to expected costs and efficiencies in 2050

Hydrogen or Liquid Hydrocarbons?

Production costs in candidate countries and import costs to Germany in 2050

A fair cost-comparison of fuel imports to Switzerland

(2017 CHF)	2020 2050 (Winter electr. through e-fuels imports)			Individual
Avg. fuel cost at wholesale	~ 0.48 CHF / I	1 – 2 CHF / I		hard-to-decarbonize sectors may suffer
Total fuel imports	154 TWh	46 TWh		
Total expenditure for importing chemical fuels	~ 7 bill. CHF	4 – 8 bill. CHF		
GDP	713 bill. CHF	969 bill. CHF		Macroeconomically
% of GDP	~1%	0.4 – 0.8 %		anoruable

But keep in mind that hard-to-decarbonize sectors will be hit anyhow by CO_2 prices, if they remain based on fossil fuels.

 \rightarrow Let's start investing in e-fuels immediately to accelerate learning and reach cost parity!

CO₂-pricing & technology innovation - We need both!

- Assuming that fossil fuel price will remain around 0.5 CHF/l, "Net-zero" CO₂ e-fuels will become competitive at CO₂ prices of ~190 – 580 CHF/tCO₂
- While CCS (with Direct Air Capture) today¹ is at 170 – 380 CHF/tCO₂
- We anticipate that there will be a competition between the rapid deployment of e-fuels and advancements in CCS.
- But beware of *general* sustainability of CCS!

Acknowledgments

- All members of the Energy Systems Group at LAV
- Giacomo Pareschi for supporting the material preparation
- SCCER Mobility (Innosuisse)
- Bundesamt für Energie (CH)

Thank you all

What do we learn out of all this?

Appendix

If Switzerland requires up to 46 TWh of "Zero"- CO_2 e-fuels + 70 TWh of electricity, can the entire World afford a similar path to sustainability?

Population in 2050E-fuel end renewable electricity demand in 2050 \checkmark ~10 mill. \checkmark $46 \text{ TWh}_{e-fuels}$ \checkmark \checkmark \checkmark $46/0.5 + 70 = 162 \text{ TWh}_{el}$ \checkmark \checkmark \checkmark $46/0.5 + 70 = 162 \text{ TWh}_{el}$ \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $46'000 \text{ TWh}_{e-fuels}$ $162'000 \text{ TWh}_{el}$ $162'000 \text{ TWh}_{el}$ $(today = 23'000 \text{ TWh}_{el})$ $162'000 \text{ TWh}_{el}$

The theoretical global renewable electricity potential is 120 mill. TWh_{el}^{-1} The technical PV electricity potential is 2.5 - 7 mill. TWh_{el}^{-2} The estimated potential for e-fuels (FT) lies between 57'000 - 69'000 TWh^{3} , with at least 20'000 TWh cheaper than $1.4 \in /l$.

²Krewitt 2009 and G. Pareschi analyses based on "ESMAP. 2020. Global Photovoltaic Power Potential by Country. Washington, DC: World Bank".

¹Assuming 20% of the net solar radiation reaching the Earth's surface is convertible to electricity (= 70'000 TW \cdot 8760 h \cdot 0.2).

³Fraunhofer IEE 2021. PtX-Atlas: Weltweite Potenziale für die Erzeugung von grünem Wasserstoff und klimaneutralen synthetischen Kraft- und Brennstoffen. Numbers for 2050

Distribution of today's greenhouse gas emissions by country and remaining CO₂ budget

- Current global CO₂ emissions: 42 GtCO₂/y
- Remaining CO₂ budget for 1.5°: 380 GtCO₂
- Remaining CO₂ budget for 2.0°: 1100 GtCO₂

Therefore, assuming a linear decrease to Netzero CO_{2} , we have:

- > ~18 years to meet the **1.5°** target (2040)
- > ~50 years to meet the **2.0°** target **(2070)**

Swiss Federal Council and the EU Green Deal have set a target of net-zero CO_2 for **2050**.

Two complementary decarbonizations strategies

- Directly electrify what is possible:
 - Cars
 - Light-duty road
 - Low-temperature heating (heat pumps)
- Use "Net-zero" CO₂ chemical energy carriers elsewhere:
 - Heavy-duty road
 - Aviation
 - Seasonal electricity storage (?)
 - High-temperature industrial process heat (?)
 - (Shipping)

Total 2019: 43 MtCO₂ / y

The grand transformation towards net-zero CO₂

A systemic approach (a race against time)

The «S-Curve» in early-industrialized countries

Synergies between policy and innovation (technology/businesses)

Background calculations for aggregated cost-comparison

(2019)	Oil products	Natural Gas
Imported energy	448 PJ 124 TWh	123 PJ 34 TWh
Net Imp/Exp expenditure	5.9 bill. CHF	0.86 bill. CHF
Price / kWh	4.76 Rp./kWh	2.53 Rp./kWh
Price / I	47.6 Rp./l	25.3 Rp./I _{diesel-eq}

Background: Renewable Energy Potential (Solar)

	PV electrical output [mill. TWh]	km2	% of Earth	% of land	PV efficiency
E-fuel + electricity demand in 2050	0.2				
Earth surface	120	510'072'000			20%
Land surface		148'940'000	29.2%	100.0%	
Without north/south poles (SolarGIS LCOE)		116'613'025	22.9%	78.3%	
GP practical land w/o obstables (SolarGIS PV_level1)	10.5	61'163'102	12.0%	41.1%	~17% (today)
GP regulations and nature protection (SolarGIS PV_level2)	7.3	41'001'492	8.0%	27.5%	~17% (today)
Krewitt 2009 PV (reused by Statista, REN21, 2017)	0.47			1.67%	25% (2050)
Krewitt 2009 CSP	2.23			13.6% (52% of Africa, ME)	CSP, 25% (2050)
Krewitt 2009 other RES	0.24				
Moriarty 2012 (review of 2002-2010 studies)	0.033 – 0.72				