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To discuss today

 Sustainability challenges — the Energy “Trilemma”
* Energy and society — the “S-curve”
* Two complementary paths for the elimination of fossil energy supply

* Renewable (synthetic) fuels:
e How much?
* Where from?
e At which costs?

* Policy, innovation and global cooperation: synergetic roles



Energy and climate policy: the “Trilemmma”

Net-Zero CO,
(and minimization of other
environmental impact)

—> Partially conflicting goals
— Optimization required

Security of Energy Supply Competitiveness
(Diversification, Share of imports) (of industry) / fair access to energy services

Alignment with international regulations /
currently: CH-energy expenditures ~4% of GDP



Energy system of planet Earth
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The energy system:

Link between natural resources and human development

Economy and Society

Investment
(capital, know-how, <€—— Wealth Energy Services
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An integrated view of an energy system
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Drivers behind CO, growth... and CO, reduction

The case of Switzerland
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Sources: IPCC AR6 WG1
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tonne of CO, adds to global warming

The near linear relationship
between the cumulative
CO, emissions and global
warming for five illustrative
scenarios until vear 2050
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Distribution of today’s GHG emissions by sector and
country
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Historical cumulative emissions per capita

The responsibility of industrialized countries
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Relevance of Transportation for the Swiss CO, Emissions
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How can we reduce CO,-emissions?

- (the four R’s — strategy)

i

C-Energyin

I

Replace

(i.e. non-carbon
energy carriers)

Recycle
(€=

Energy Conversion System

(=)

Reduce

(efficiency
increase)

CO, out

!

Remove

(sequestration)
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If we have 20-50 years, why is immediate action imperative?

1.5° net-zero target

2.0° net-zero target
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Data for cars from Held et al. (2021): European Transport Research Review, vol. 13, art. 9
Data for ships from Held et al. (2021): 7th Internat. Symposium on Ship Operations, Management, & Economics
Data for aircraft from Dray (2013): Journal of Air Transport Management, vol. 28, pp. 62-69
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In addition:

Power plants = 20-50 years
Buildings = 30-100 years
Industrial processes = > 20 years
Roads, Grids, Refineries = 50-100
years

Huge need for investments in
infrastructure!

Invest in decarbonizing
incumbent assets!
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Two complementary decarbonizations strategies

A. Directly electrify what is possible: ost o 1
* Cars useful energy)
* Light-duty road
* Low-temperature heating (heat pumps)

'{} »” H
B. Use. Net-zero” CO, chemical energy @
carriers elsewhere:

* Heavy-duty road
* Aviation
e Seasonal electricity storage (?) Fossil Fuels

* High-temperature industrial process heat (?)

. (Shipping) 0% CO, reduction across 100%
energy sectors




Swiss Electricity Balance today and in 2050
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However, the situation in Winter requires imports in the order of 9 TWh (compared to today’s 5 TWh)

Source: EP2050+, Szenario ZERO Basis
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Cumulative shares [%]

Several energy sectors cannot be directly electrified
Example of long-haul aviation

Outbound flights from Switzerland
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Estimates indicate that with a battery-pack energy
density of 800 Wh/kg (expected around 2050),
1’000 km of flight could be covered by all-electric
aircrafts.

However, outbound flights shorter than 1’000 km
correspond to only 19% of total Swiss CO,
emissions from aviation.

Even then, assuming 7 flights a day and a useful
battery lifetime of 1’000 deep discharge cycles,
batteries should be replaced after 5 months of

operation.

- Similar challenges for shipping, heavy-duty trucks and some industrial processes

Source:
=  Own calculation based on the methodology of: Seymour K., Held M., Georges G., Boulouchos K. (2020): "Fuel Estimation in Air Transportation: Modeling global fuel
consumption for commercial aviation” in Transportation Research Part D: Transport and Environment, DOI: 10.1016/j.trd.2020.102528

= Schéfer A., et al. (2019): ,, Technological, economic and environmental prospects of all-electric aircraft” in Nature Energy, vol.4 (2), pp. 160-166 15



Long-term consequences of seasonal fluctuations
of renewable electricity
Example of Germany: first half of 2020 vs first half of 2021

+38%

80
2020

o))
o

2021

+10%

TWh / half year
N
o

N
o

Total production 1st half 2020: 244 TWh
Ttlp oduction 1st half 2021: 252 TWh
e: Fraunhofer ISE

PV Wind Coal

Therefore: chemical energy carriers for power-on-demand will remain indispensable!! But
we must replace fossil ones with renewable fuels! This implies large chemical energy
storage capacities.
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But which “Net-zero” CO, (hydrocarbon) fuels exactly?

It’s going to depend on the relative learning rates of Direct Air Capture (DAC) and Storage
against the E-Fuel production chain (which includes DAC itself)

Cost / liter Storage site limitations

and public acceptance?

RES+Electrol.t On the long-term we hope that
e-fuels will become cheaper
than fossil fuels with CCS

Fossil Fuels +
DAC & Storage

[ Fossil fuels

I CO, storage

DAC

[
>

Time

tRenewable energy source + Battery + Electrolyzer + Hydrogen storage and compression + Synthesis (Methanation/Fischer-Tropsch) 17



TWh/y

Evolution of Swiss Energy Imports
according to EnergiePerspektiven2020 (EP2050+) ZERO Basis*

160
150
140
130
120
110
100
90
80
70
60
50

40

30

20

10

-10

Nuclear fuel Sso
~

Winter electricity

(KK\NSO)/

2020 2025 2030 2035 2040

2045

2050

*Projection of PtKerosin
for internat. aviation
modified to account a
more gradual growth

PtKerosin for Internat. Aviation

PtLig.Fuels for Domestic Transport

2055 2060\ domestic production




Securing energy supply for Switzerland in 2050

Scenarios

Description

Winter electricity
imports

Domestic power
generation

E-fuels imports

Foreign electricity
demand for e-fuels

productiont

EP2050+ ZERO Basis

ZERO Basis scenario of the

Energieperspektiven: directly
importing electricity in winter
and e-fuels only for transport.

9 TWh el.

70 TWh el.

30 TWh e-fuels

60 TWh el.

Winter electr. through
e-fuels imports

Winter electricity deficit is met by
importing additional e-fuels and
generating electricity
domestically via CCGTs or CHPs.

70 TWh el.

46 TWh e-fuels

92 TWh el.

Winter electr. through
domestic shift

Winter electricity deficit is met by
expanding Swiss PV generation and
shifting all excess summer
production to winter via e-fuels
(electrolyzers + CCGTs / CHPs).

0

80 TWh el.

30 TWh e-fuels

60 TWh el.

tToday’s electricity-to-fuel factor lies between 1.6 (compressed hydrogen) and 2.7 (liquid hydrocarbons). Source: B. Stolz, M. Held (2021)
published in Nature Energy. With future improvements of the electricity-to-fuel conversion, the average factor would be around 2.



Assessment of Swiss security of energy supply
Energy Imports [TWh / y]
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What would it take to produce 92 TWh of electricity?
(just for e-fuels!)

Full-load

hours

PV in Switzerland

PV in Middle East
Off-shore Wind EU
On-shore Wind Patagonia

Nuclear

*Without transport cost...

1’000

2’500

4’000

5’300

7’000

Peak
capacity

92 GW

37 GW

23 GW

17 GW

13 GW

Surface area
km x km

39 x 39

18 x 18

66 x 66

46 x 46

Virtually O

Preliminary results by G. Pareschi (LAV ETHZ) based on multiple sources and according to expected costs and efficiencies in 2050

Surface area
% of
Switzerland

4%

1%

10%

5%

Virtually O

CHF / liter

2.8

1.1

2.0

1.0

2.0

bill. CHF

Total annualized

114

4.5

8.3

4.2

8.2
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Hydrogen or Liquid Hydrocarbons?

Production costs in candidate countries and import costs to Germany in 2050
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Source: Fraunhofer 2021, PtX-Atlas: Weltweite Potenziale fiir die Erzeugung von griinem Wasserstoff und klimaneutrale synthetischen Kraft- und Brennstoffen 22



A fair cost-comparison of fuel imports to Switzerland

(2017 CHF) 2020

Avg. fuel cost at wholesale ~0.48 CHF /|

Total fuel imports 154 TWh
Total e>.<pend|tur-e for ~7 bill. CHF
importing chemical fuels

GDP 713 bill. CHF
% of GDP ~1%

2050 (Winter electr.

through e-fuels imports)

1-2CHF/I

46 TWh
4 — 8 bill. CHF

969 bill. CHF

0.4-0.8%

Individual
hard-to-decarbonize
sectors may suffer

Macroeconomically
affordable

But keep in mind that hard-to-decarbonize sectors will be hit anyhow by CO, prices, if they

remain based on fossil fuels.

- Let’s start investing in e-fuels immediately to accelerate learning and reach cost parity!



CO,-pricing & technology innovation - We
need both!

Energy price
[€/litre] A
2.5-5CHF/l O< __ Synthetic Fuels
— ~
— ~
Technology ~
Innovation T~ — -
==
- ~ 1-2 CHF/I
CO, Price - -—
—_—
—
-— - .
~0.5 CHF/I O~ Fossil Fuels
1 >
2020 2050 Year

'IEA (2021), Is carbon capture too expensive?, IEA, Paris https://www.iea.org/commentaries/is-carbon-capture-too-expensive

Assuming that fossil fuel price will
remain around 0.5 CHF/I, “Net-zero”
CO, e-fuels will become competitive at
CO, prices of 190 — 580 CHF/tCO,
While CCS (with Direct Air Capture)
today' is at 170 — 380 CHF/tCO,

We anticipate that there will be a
competition between the rapid
deployment of e-fuels and
advancements in CCS.

But beware of general sustainability of
CCS!

24
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What do we learn out of all this?



Appendix

Prof. K. Boulouchos
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If Switzerland requires up to 46 TWh of “Zero”-CO, e-fuels + 70 TWh of
electricity, can the entire World afford a similar path to sustainability?

Population in 2050 E-fuel end renewable electricity demand in 2050

~10 mill. _
Assume similar development, 46/0.5 + 70 = 162 TWh,,

i.e. similar GDP/cap

. and TWh/GDP 46’000 TWh__ ...
10 bill 162’000 TWh,,

(today = 23’000 TWh,)

The theoretical global renewable electricity potential is 120 mill. TWh,

The technical PV electricity potential is 2.5 = 7 mill. TWh_

The estimated potential for e-fuels (FT) lies between 57°000 — 69’000 TWh?,
with at least 20’000 TWh cheaper than 1.4 €/I.

TAssuming 20% of the net solar radiation reaching the Earth’s surface is convertible to electricity (= 70°'000 TW - 8760 h - 0.2).
ZKrewitt 2009 and G. Pareschi analyses based on “ESMAP. 2020. Global Photovoltaic Power Potential by Country. Washington, DC: World Bank”.

3Fraunhofer IEE 2021. PtX-Atlas: Weltweite Potenziale fiir die Erzeugung von griinem Wasserstoff und klimaneutralen synthetischen Kraft- und Brennstoffen. Numbers for 2050



Distribution of today’s greenhouse gas emissions by
country and remaining CO, budget
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* Current global CO, emissions: 42 GtCO,/y
* Remaining CO, budget for 1.5°: 380 GtCO,
* Remaining CO, budget for 2.0°: 1100 GtCO,

Therefore, assuming a linear decrease to Net-
zero CO, we have:

» ~18 years to meet the 1.5° target (2040)

» ~50 years to meet the 2.0° target (2070)

Swiss Federal Council and the EU Green Deal
have set a target of net-zero CO, for 2050.



Two complementary decarbonizations strategies

Directly electrify what is possible: Total 2019: 43 MtCO, / y
* Ca rs Other
. Industrial processes %
* Light-duty road 5% * cors
* Low-temperature heating (heat pumps) "
Services
Use “Net-zero” CO, chemical energy 8" e suses
carriers elsewhere: LDV Vans
3%
’ Heavy-dUty road Residential HDV41;/I:)UCkS
* Aviation 1%
 Seasonal electricity storage (?) Energy sector ‘ nt. Avation
 High-temperature industrial process heat (?) Other

* (Shipping)



The grand transformation towards net-zero CO,

A systemic approach (a race against time)

co,
A

<— “Business As Usual”

More effective provision
of energy services

Efficiency increase of
energy conversions

Massive shift to renewable
energy carriers

<— Approaching net-zero

qualitative depiction

‘ » Time

In about 30 years!
Prof. K. Boulouchos

v

The challenges
Lifetime of valuable assets:

Power plants = 20-50 years
Vehicles = 12-30 years
Buildings = 30-100 years
Roads, Grids, Refineries 2
50-100 years

Huge need for investments in new
and repurposed infrastructure!
Invest in decarbonizing incumbent
assets!
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The «S-Curve» in early-industrialized countries
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Sources: The PRIMAP-hist national historical emissions time series (1750-2019). The Maddison Project Database, version 2018.
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Synergies between policy and innovation

(technology/businesses)

Specific CO,-avoidance costs in CHF/ton,
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/
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Background calculations for aggregated cost-comparison

(2019) Oil products Natural Gas

Imported energy 448 Pl 123 ]
124 TWh 34 TWh

Net Imp/Exp expenditure 5.9 bill. CHF 0.86 bill. CHF
Price / kWh 4.76 Rp./kWh 2.53 Rp./kWh
Price /| 47.6 Rp./| 25.3 Rp./ljiesel-eq



Background: Renewable Energy Potential (Solar)

PV electrical output
[mill. TWh]

E-fuel + electricity demand
in 2050

Earth surface
Land surface

Without north/south poles
(SolarGIS LCOE)

GP practical land w/o

obstables
(SolarGIS PV_levell)

GP regulations and nature

protection
(SolarGIS PV_level2)

Krewitt 2009 PV
(reused by Statista, REN21, 2017)

Krewitt 2009 CSP

Krewitt 2009 other RES

Moriarty 2012
(review of 2002-2010 studies)
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PV efficiency
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~17% (today)
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